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ABSTRACT 
 
Failure of tracking algorithms is inevitable in real and on-
line tracking systems. The online estimation of the track 
quality is therefore desirable for detecting tracking failures 
while the algorithm is operating. In this paper, we propose a 
taxonomy and present a comparative evaluation of online 
quality estimators for video object tracking. The measures 
are compared over a heterogeneous video dataset with 
standard sequences. Among other results, the experiments 
show, that the Observation Likelihood (OL) measure is an 
appropriate quality measure for overall tracking 
performance evaluation, while the Template Inverse 
Matching (TIM) measure is appropriate to detect the start 
and the end instants of tracking failures.  
 
Index Terms— performance evaluation without ground-
truth, visual tracking quality, video surveillance 
 

1. INTRODUCTION 
 
Tracking objects in video sequences is a critical task in 
many computer vision applications. No tracking algorithm 
can perfectly perform in all conditions due to the variability 
and uncertainty of the data generated for example by 
crowded environments, clutter, changing illumination and 
occlusions. Consequently, failure of tracking algorithms is 
inevitable in real tracking systems. Ground-truth 
information is typically used for the evaluation of a tracking 
algorithm [1]. However, ground-truth annotations are very 
expensive to produce and therefore they usually cover only 
a small portion of video sequences and therefore a small 
percentage of data variability. This limitation makes it 
difficult to extrapolate the results of the tracking 
performance evaluation to new sequences. Moreover, 
ground-truth annotations are not available when a tracker 
has to operate while the video stream is being captured. 
Online performance evaluation not based on ground-truth is 
therefore a desirable evaluation alternative. The idea is to 

analyze online the intermediate results of the tracker (e.g., 
target position estimation or observation likelihood) at each 
time instance to determine the accuracy of the tracker.  

In this paper, we propose a taxonomy for online quality 
estimators and we present a comparative evaluation by 
objectively evaluating representative measures to 
understand their advantages and drawbacks on commonly 
used datasets. The result of this evaluation is a 
recommendation on which measure to use to detect specific 
performance characteristics of a tracker.  

This paper is organized as follows: Section 2 describes 
the proposed classification and representative state-of-art 
measures; Section 3 discusses experimental results and 
finally Section 4 describes the conclusions and future work. 
 

2. ONLINE TRACK QUALITY ESTIMATION 
 
Online track quality measures that do not make use of 
ground-truth can be classified into three main categories, 
namely trajectory-based, feature-based, and hybrid-based.  
 
2.1. Trajectory-based measures  

 
Trajectory-based measures use the information from the 
generated trajectories (the time-series representing the 
estimated position of the target over time) to measure the 
quality of a track. We have identified three sub-categories: 
Forward-based measures, Model-based measures and 
Forward-backward measures. 

Forward-based quality measures analyze short trajectory 
segments. For example, Motion Smoothness (MS) [2] 
analyzes the trajectory increment for two adjacent frames: 
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where L2 is the Euclidean distance and Tt represents the 
target position at time t. This measure is not robust against 
fast position changes in case of successful tracking. 

Model-based quality measures use partial trajectories 
and online acquired (trajectory) models to evaluate the track 



quality. For example, [3] uses the similarity between the 
acquired trajectories and the dynamically computed 
trajectory clusters as a measure of tracking quality. 

Finally, Forward-backward quality measures apply an 
additional backward tracking analysis and the overall 
quality is derived from similarities between the forward and 
the backward trajectories. For example, [4] uses the 
Template Inverse Matching (TIM) and it is defined as:  
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where Cx, Cy, H and W, are the center coordinate, height and 
width of the target, respectively. Additionally, Tt and T’t-1 
are the targets estimated positions at time t-1 for forward 
and backward tracking (using as template the target 
estimated at time t).  Unlike MS, TIM is robust against fast 
position changes in case of successful tracking because the 
change can be recovered by the backward tracking. 

 
2.2. Feature-based measures 

 
Feature-based measures are based on the analysis of the 
internal stages or output of the tracking algorithm. We have 
identified two sub-categories: Model-dependent and Model-
independent approaches.  

Model-dependent approaches use complementary 
features of the target model to measure the track quality. For 
example, [5] uses motion and color edges to measure the 
track quality of a contour tracking algorithm. 

Model-independent approaches use measures that are 
independent of the target model and consider the output (or 
internal stages) of the tracking algorithm. Different types of 
measures are proposed for deterministic tracking 
approaches (e.g., weak similarity criterion [4]) or 
probabilistic tracking approaches (e.g., Observation 
Likelihood [6] or State Covariance Analysis [7]). For 
example, [6] computes the negative log-likelihood of the 
current observation and it is approximated as follows: 
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where ωi(t) is the sample i of the observation likelihood 
distribution at time t and N is the number of samples. OL is 
useful for measuring quick changes in the observation 
likelihood of the tracked target. However, its performance 

decreases for slow changes. Moreover, [7] analyzes the 
covariance of the target state distribution before and after 
weighting by the observation likelihood. It is defined as:  
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where Cb and Ca are, respectively, the covariance matrix of 
the state distribution before and after weighting by the 
observation likelihood (assuming equal weights for the 
computation of Cb). The value of COV increases when the 
distribution uncertainty grows (in terms of variance) and 
tends to zero as the state distribution becomes more peaked.  

 
2.3. Hybrid-based measures 

 
Hybrid-based measures include methods that combine 
several approaches. Temporal and non-temporal analyses 
are combined to increase the performance of the track 
quality estimation. For example, [8] proposes a weighted 
sum between motion smoothness, temporal length and 
size/color similarity. Its advantage is the performance 
improvement for complex scenes that contain different 
tracking failures. However, a priori information (the weights 
of the measures) has to be determined for each scene. 

 
3. COMPARATIVE EVALUATION 

 
3.1. Experimental setup 
 
The measures under analysis are the following: Motion 
Smoothness (MC) [2], Template Inverse Matching (TIM) 
[4], Observation Likelihood (OL) [6] and State Covariance 
analysis (COV) [7]. The evaluation dataset is composed of 
sequences from the D11 and D22 public datasets for face 
tracking, the PETS2001 dataset3, the CAVIAR dataset4 and 
the VISOR dataset5. Their characteristics are summarized in 
Table 1 and the target initialization is shown in Fig. 1. As 
tracking algorithm we used a color-based particle filter [9]. 

                                                 
1 ftp://motinas.elec.qmul.ac.uk/pub/single_face 
2 http://www.ces.clemson.edu/~stb/research/headtracker 
3 http://www.cvg.rdg.ac.uk/PETS2001/ 
4 http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/ 
5 http://imagelab.ing.unimore.it/visor/ 

DATASET TARGETS SIZE CHARACTERISTICS 
D1 H1 320x240 Scale change, clutter, occlusion

D2 
 H2,H3, 
H4,H5 

128x96 
Scale/appearance change, 
clutter, occlusions 

PETS01 P1,P2,P3,P4 768x576 Scale change, occlusions 
CAVIAR P5 384x288 Clutter 
VISOR P6, P7 352x288 Scale change, occlusions 

 Table 1:  Description of the evaluation dataset

 
Figure 1: Target initialization for the evaluation dataset. 

(From top-left to bottom-right) faces: H1, H2, H3, H4 and 
H5; pedestrians: P1, P2, P3, P4, P5, P6 and P7. 



In order to evaluate the measures, we analyze the 
overall quality and the quality at the start/end of a failure 
(that is useful for failure detection). To compare the overall 
quality, we use ROC analysis evaluating the discrimination 
of their values between two classes: successful and 
unsuccessful tracks.  An unsuccessful track is determined if 
the Displacement Error Rate (DER) [10] is above a certain 
value that depends on the minimum allowed overlap 
between the ground-truth and detected areas (e.g., a value of 

2 2  indicates a minimum overlap of 50%). DER computes 

the distance between the target estimation, Te, and the 
ground-truth information, TGT, as follows: 
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where (x,y)e, (x,y)GT  and AGT are, the center location of the 
target estimated/annotated and the area of the ground-truth 
annotation, respectively. Additionally, the accuracy of the 
DER measure has been verified by visually defining the 
instants when the tracker fails.  
 
3.2. Overall quality comparison 
 
Due to the statistically nature of the selected tracking 
algorithm, several runs have been performed to get 
meaningful results. A summary of the experiments is shown 
in Table 2. Feature-based measures (OL and COV) perform 
better than trajectory-based measures (MS and TIM), 
because the tested sequences contained failures that 
produced a change in the state or observation likelihood and 
sometimes a fast position change of the target. Additionally, 
feature-based measures presented high standard deviation 
showing their dependency on the probabilistic analyzed 

data. Among the trajectory-based measures, TIM presents 
the highest AUC value due to the robustness introduced by 
the backward tracking stage. MS has low accuracy and 
depends on the movement of the target. Among the feature-
based measures, OL outperforms COV as the majority of 
the evaluated failure types implied a change in the target 
observation likelihood (e.g., particle weights in a particle 
filter framework) instead a variation of the state variance.  
 
3.3. Analysis of the performance of the quality measures  
 
A detailed analysis of the results in the test sequences has 
been performed to evaluate the DER and the selected 
quality measures.  Fig. 2 shows an example of the DER and 
the track quality measurements for the H5 target of the 
“seq_mb” sequence. Fig. 2a shows that the DER produced a 
good measurement of the track quality useful for the overall 
quality comparison.  

Regarding the quality of the measures, TIM provided 
high values at the starting/ending failure frames when the 
position change was due to model target dissimilarities (Fig. 
2d and 2e) and similarities with clutter (Fig. 2c). During the 
failures, TIM did not provide high values because there was 
not a position change, whilst outside the failures its lower 
values indicated high-quality measurements. MS provided 

(b) 

(c) 

(d) 

(e)
Figure 2:   Results for the tracking analysis of H5 target of the “seq_mb” test sequence in terms of (a) Displacement Error Rate 
(DER) and (b) Track quality measures. Additionally, a zoom of the track quality estimation measurements is show for the (c) 

Clutter (frames 90-155), (d) Appearance change (frames 170-240) and (e) Occlusion (frames 435-445) failures. 

(a) 

MEASURE 
Area Under 

Curve (AUC) 
False Positive 

rate 
True Positive 

rate 
MS [2]  0.55 ± 0.0599 0.43 ± 0.0795 0.53 ± 0.0727 
TIM[4]  0.69 ± 0.0358 0.37 ± 0.0481 0.60 ± 0.0651 
OL [6]  0.78 ± 0.0887 0.20 ± 0.0554 0.65 ± 0.1133 

COV [7] 0.70 ± 0.0675 0.35 ± 0.0619 0.72 ± 0.0986 

Table 2:  Comparative results for the ROC analysis using 10 
runs (in terms of average ± standard deviation) 



high values during the failures (starting/ending and 
duration) but also presented high values outside them. In 
general, MS obtained low performance to measure track 
quality. OL provided high values during the tracking 
failures because there was a change in observation 
likelihood in all the failures. At the starting/ending frames, 
its results depended on the rate of the observation likelihood 
change as demonstrated for the slow (Fig. 2e) and medium 
(Fig. 2c) changes. COV obtained good quality 
measurements in case of occlusion and appearance changes 
because the state distribution variance is increased to search 
the lost target. Moreover, the performance of COV is 
reduced when the target model is adapted to the wrong track 
(frames 220-260 of Fig. 2d). 

Illustrative examples of the track quality measures are 
shown in Fig. 3.  An example of similarities with the target 
model is shown in Fig. 3a (clutter). The small change in the 
observation likelihood and state distribution variance 
produced a low quality measurement of track quality by OL 
and COV. TIM obtained good results because there was a 
change in position (to the wrong estimated target). MS 
obtained low quality measurement because the target 
movement was small. Fig. 3b and 3c show an example of 
dissimilarities with the target model (an occlusion and an 
appearance change). The observation likelihood and state 
distribution variance changes were measured, respectively, 
by OL and COV obtaining high quality measurements. TIM 
obtained poor results because the backward tracking used 
the wrong tracked target as template being only adequate its 
use for the instant when the dissimilarities were produced. 
MS also obtained high quality measures because the quick 
changes of target movement 

 
4. CONCLUSIONS AND FUTURE WORK 

 
This paper introduced a taxonomy and presented a 
comparative evaluation of online quality estimation 
measures for video object tracking.  Existing measures have 
been classified into three main categories and representative 
measures for each category have been described. 
Experimental results using a heterogeneous dataset showed 

that different measures should be applied to evaluate the 
overall performance or the start/end time of failure. For 
measuring the start and the end of a tracking failure the TIM 
measure is outperforming the other measures both for target 
model similarities (e.g., clutter) and dissimilarities (e.g., 
appearance changes and occlusions); whereas when 
considering the overall quality, the OL measure obtained the 
best results.  

As future work, we will analyze the impact of the 
various thresholds applied on the quality measures (their 
values and variability) to detect the tracking failure. 
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                   (a)                                               (b)        (c) 
Figure 3: Examples of track quality measures for (a) clutter (target P5, frame 545 of the sequence “ThreePastShop2cor”), (b) an 
occlusion (target P6, frame 45 of the sequence “Visor_1”) and (c) appearance change (target H5, frame 182 of the sequence 
“seq_mb”). Results correspond to ground-truth (top-left), tracking results (particles) (top-right) and the measures (bottom). 


